Abstract

In this paper we study an extension of the bivariate generalized Bernstein operators based on a non-negative real parameters. For these operators we obtain the order of approximation using Peetre’s K-functional, a Voronovskaja type theorem and the degree of approximation by means of the Lipschitz class. Further, we consider the Generalized Boolean Sum operators of generalized Bernstein type and we study the degree of approximation in terms of the mixed modulus of continuity. Finally, we show the comparisons by some illustrative graphics in Maple for the convergence of the operators to certain functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.