Abstract
AbstractWe study a general model of recursive trees where vertices are equipped with independent weights and at each time-step a vertex is sampled with probability proportional to its fitness function, which is a function of its weight and degree, and connects to $\ell$ new-coming vertices. Under a certain technical assumption, applying the theory of Crump–Mode–Jagers branching processes, we derive formulas for the limiting distributions of the proportion of vertices with a given degree and weight, and proportion of edges with endpoint having a certain weight. As an application of this theorem, we rigorously prove observations of Bianconi related to the evolving Cayley tree (Phys. Rev. E66, paper no. 036116, 2002). We also study the process in depth when the technical condition can fail in the particular case when the fitness function is affine, a model we call ‘generalised preferential attachment with fitness’. We show that this model can exhibit condensation, where a positive proportion of edges accumulates around vertices with maximal weight, or, more drastically, can have a degenerate limiting degree distribution, where the entire proportion of edges accumulates around these vertices. Finally, we prove stochastic convergence for the degree distribution under a different assumption of a strong law of large numbers for the partition function associated with the process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.