Abstract

In network theory, Pearson’s correlation coefficients are most commonly used to measure the degree assortativity of a network. We investigate the behavior of these coefficients in the setting of directed networks with heavy-tailed degree sequences. We prove that for graphs where the in- and out-degree sequences satisfy a power law with realistic parameters, Pearson’s correlation coefficients converge to a nonnegative number in the infinite network size limit. We propose alternative measures for degree-degree dependencies in directed networks based on Spearman’s rho and Kendall’s tau. Using examples and calculations on the Wikipedia graphs for nine different languages, we show why these rank correlation measures are more suited for measuring degree assortativity in directed graphs with heavy-tailed degrees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.