Abstract
We establish doubly-exponential degree bounds for Gröbner bases in certain algebras of solvable type over a field (as introduced by Kandri-Rody and Weispfenning). The class of algebras considered here includes commutative polynomial rings, Weyl algebras, and universal enveloping algebras of finite-dimensional Lie algebras. For the computation of these bounds, we adapt a method due to Dubé based on a generalization of Stanley decompositions. Our bounds yield doubly-exponential degree bounds for ideal membership and syzygies, generalizing the classical results of Hermann and Seidenberg (in the commutative case) and Grigoriev (in the case of Weyl algebras).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.