Abstract
High hardness, low friction coefficient and chemical resistance are only a few of the exceptional mechanical qualities of diamond. Diamonds can be artificially created to have different levels of conductivity, or they can be single, micro or nanocrystalline and highly electrically insulating. It also has high biocompatibility and is famous for being mechanically robust. Due to its high hardness, lack of ductility and difficulty in welding, diamond is a challenging material to construct devices with. Diamonds have experienced a rise in attention as a biological material in recent decades due to new synthesis and fabrication techniques that have eliminated some of these disadvantages. In general, entropic measurements are used for investigating the chemical or biological properties of molecular structures. This study calculates several important -Banhatti entropies, redefined Zagreb entropies and atom-bond sum connectivity entropy for diamond crystals. We also present a numeric and graphical explanations of obtain indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.