Abstract
With the rapid increase of public code repositories, developers maintain a great desire to retrieve precise code snippets by using natural language. Despite existing deep learning-based approaches that provide end-to-end solutions (i.e., accept natural language as queries and show related code fragments), the performance of code search in the large-scale repositories is still low in accuracy because of the code representation (e.g., AST) and modeling (e.g., directly fusing features in the attention stage). In this paper, we propose a novel learnable de ep G raph for C ode S earch (called deGraphCS ) to transfer source code into variable-based flow graphs based on an intermediate representation technique, which can model code semantics more precisely than directly processing the code as text or using the syntax tree representation. Furthermore, we propose a graph optimization mechanism to refine the code representation and apply an improved gated graph neural network to model variable-based flow graphs. To evaluate the effectiveness of deGraphCS , we collect a large-scale dataset from GitHub containing 41,152 code snippets written in the C language and reproduce several typical deep code search methods for comparison. The experimental results show that deGraphCS can achieve state-of-the-art performance and accurately retrieve code snippets satisfying the needs of the users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Software Engineering and Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.