Abstract

In this paper, degradation of a mixture of three azo dyes was studied by the photo-assisted electrochemical process using an O₂-diffusion cathode containing carbon nanotubes and boron-doped diamond (BDD) anode. The concentration of three textile dyes (C.I. Acid Orange 8 (AO8), C.I. Acid Orange 10 (AO10), and C.I. Acid Orange 12 (AO12)) was determined simultaneously despite the severe overlap of their spectra. For this purpose, partial least square (PLS), as a multivariate calibration method, was utilized based on recording UV-Vis spectra during the decolorization process. Moreover, the central composite design was used for the modeling of photo-assisted electrochemical decolorization of the aqueous solutions containing three dyes. The investigated parameters were the initial concentration of three dyes, applied current and reaction time. Analysis of variance (ANOVA) revealed that the obtained regression models match the experimental results well with R (Khataee et al. 2010, Clean-Soil Air Water 38 (1):96-103, 2010) of 0.972, 0.971, and 0.957 for AO8, AO10, and AO12, respectively. Three-dimensional surface and contour plots were applied to describe the relation between experimental conditions and the observed response. The results of TOC analysis confirmed good ability of proposed photo-assisted electrochemical process for degradation and mineralization of textile industry wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.