Abstract

The metabolite 2,6-dichlorobenzamide (BAM) is a frequent groundwater pollutant produced during degradation of the herbicide 2,6-dichlorobenzonitrile (dichlobenile). Spatial variability of BAM mineralisation is uncharacterized in surface soil, however, and factors controlling the heterogeneity remain unknown. We addressed these issues by sample-to-sample comparisons of BAM mineralisation rates and a range of soil characteristics at spatial scales ranging from meters to centimetres. For mineralisation assays nano-molar concentrations of labelled BAM were added to determine mineralisation rates under realistic conditions. We found a significant variability of BAM mineralisation which increased with decreasing spatial scale. BAM mineralisation rates were correlated to the density of BAM-degrading bacteria but not to water content, TOC, NH 4 +, NO 3 −, or pH. The genus Aminobacter, which contains the only BAM degraders known, was detected in MPN samples of BAM degraders by a specific PCR assay targeting the 16S rRNA gene, confirming a role of Aminobacter in BAM mineralisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.