Abstract

Adaptation of methanol-grown C. boidinii to ethanol-utilization in non-growing cells resulted in decreased activity of the peroxisomal enzyme alcohol oxidase. Re-appearance of alcohol oxidase activity was dependent on protein synthesis de novo. Degradation of alcohol oxidase protein was shown to parallel the decrease in activity. Adaptation of methanol-grown cells to ethanol-utilization resulted in increased absorbance due to cytochromes and decreased absorbance due to flavoprotein. Decrease in alcohol oxidase activity was associated with loss of the flavin coenzyme, FAD, from the organisms and the appearance of flavins (FAD, FMN, riboflavin) in the surrounding medium. Electron microscopic observations showed that general degradation of whole peroxisomes rather than specific loss of crystalline cores (alcohol oxidase protein) occurred during the adaptation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call