Abstract

The current study focuses on the development of a formulation of polyester polyurethane (PEPU) samples using castor oil (CO) modified polyester polyol and partially biobased aliphatic isocyanate. The CO modified polyester polyol was synthesized employing transesterification reaction between CO and diethylene glycol in the presence litharge (PbO) catalyst. Subsequently, the modification of CO was confirmed using proton nuclear magnetic resonance (1HNMR) spectra analysis. In the next stage, the biobased polyester polyurethane nanocomposites (PEPUNC) were prepared by incorporating 3 wt% OMMT nanoclay within PEPU through in situ polymerization technique. The produced PEPU was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1HNMR spectra analysis. Further, the degradation properties of developed PEPU subjected to soil-burial, UV exposure and hydrolytic-salt water medium were noted by FTIR spectroscopy. Corresponding weight loss, mechanical measurements and morphological studies through scanning electron microscopy (SEM) analysis were studied. The results showed that the addition of OMMT nanoclay within the PEPU matrix produces significant improvement in the degradation rate which indicated the susceptibility of OMMT nanoclay to humidity upon exposure to soil burial. The produced microorganisms from the soil resulted in significant chemical and morphological changes in the entire structure of the PEPU. Additionally, the highest degradation and percentage of weight loss was observed under soil burial as compared to UV exposure and hydrolytic-salt water medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call