Abstract

In order to investigate the effect of different chain extenders on degradation properties of segmented polyurethanes (SPUs), three types of segmented polyurethanes (SPU-P, SPU-O and SPU-A) based on poly ( d, l-lactic acid) diol, hexamethylene diisocyanate (HDI), were synthesized with three chain extenders: peperazine (PP), 1, 4-butanediol (BDO) and 1, 4-butanediamine (BDA), respectively. Thermogravimetric analysis, activation energy and in vitro degradation were used to characterize the obtained polymers, quantitatively. The results revealed that chain extender played an important role in thermal degradation and biodegradation of polyurethanes. Thermogravimetric analysis and activation energy demonstrated that SPU-O, SPU-P and SPU-A presented best, second and weakest thermostability, respectively, and the thermal degradation mechanism of three SPUs was the same and regarded as a two-stage degradation. Data of hydrolytic degradation of the polymers during 12 weeks indicated that the in vitro degradation stability of SPU-A and SPU-P was similar, but both were better than that of SPU-O. The reason for the differences among three types of SPUs was discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.