Abstract

The degradation rate of sodium fluoroacetate (SFA) was assessed in a laboratory microcosm study incorporating 3 New Zealand soil types under different temperature (5 °C, 10 °C, or 20 °C) and soil moisture (35% or 60% water holding capacity) conditions using guideline 307 from the Organisation for Economic Co-operation and Development. A combination of nonlabeled and radiolabeled (14) C-SFA was added to soil microcosms, with sampling and analysis protocols for soil, soil extracts, and evolved CO(2) established using liquid scintillation counting and liquid chromatography-mass spectrometry. Degradation products of SFA and their rates of formation were similar in the 3 soil types. The major degradation pathway for SFA was through microbial degradation to the hydroxyl metabolite, hydroxyacetic acid, and microbial mineralization to CO(2), which constituted the major transformation product. Temperature, rather than soil type or moisture content, was the dominant factor affecting the rate of degradation. Soil treatments incubated at 20 °C displayed a more rapid loss of (14)C-SFA residues than lower temperature treatments. The transformation half-life (DT50) of SFA in the 3 soils increased with decreasing temperature, varying from 6 d to 8 d at 20 °C, 10 d to 21 d at 10 °C, and 22 d to 43 d at 5 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call