Abstract

Lithium-ion batteries (LIBs) are now widely exploited for multiple applications, from portable electronics to electric vehicles and storage of renewable energy. Along with improving battery performance, current research efforts are focused on diminishing the levelized cost of energy storage (LCOS), which has become increasingly important in light of the development of LIBs for large transport vehicles and power grid energy storage applications. Since LCOS depends on the battery's lifetime, understanding the mechanisms responsible for battery degradation and developing strategies to increase the lifetime of LIBs is very important. In this review, the latest developments related to the performance and degradation of the most common LIBs on the market are reviewed. The numerous processes underlying LIB degradation are described in terms of three degradation loss modes: loss of lithium inventory (LLI), active positive electrode material loss and degradation, and active negative electrode material loss and degradation. A strong emphasis is placed on the most recent strategies and tactics for LIB degradation mitigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call