Abstract
Reactive azo dye Procion Red H-E7B solutions have been submitted to solar-assisted photo-Fenton degradation. The solution color quickly disappears, indicating a fast degradation of the azo group. Nevertheless, complete DOC removal was not accomplished, in accordance with the presence of resistant triazine rings at the end of the reaction. The intermediates generated along the reaction time have been identified and quantified. LC-(ESI)-TOF-MS analysis allowed the detection of 18 aromatic compounds of different size and complexity. Some of them shared the same accurate mass, and consequently, the same empirical formula, but appeared at different chromatographic retention times, evidencing their different molecular structures. Heteroatom oxidation products like NH4+, NO3-, Cl-, and SO4(2-) have also been quantified and explanations of their release are proposed. Short chain carboxylic acids are also detected at long reaction times, as a previous step to complete dye mineralization. A link between the disappearance of the largest intermediate products and the increase of the solutions biodegradability has been established. Finally, taking into account all the findings of the present study and previous related works, the evolution from the original dye to the final products (triazine and CO2) is proposed in a general reaction scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.