Abstract
Trinitrotoluene (TNT), a nitroaromatics, is a major pollutant in explosive contaminated soils. Present study reports the effect of initial concentration of TNT on its degradation kinetics in soils. Soils from two contaminated sites viz. Clausthal and Elsnig, Germany, were mixed with an uncontaminated reference soil to get different initial concentrations (mg/kg) viz Clausthal-1 (54.29), Clausthal-2 (30.86), Clausthal-3 (7.05) Elsnig-1 (879.67), Elsnig-2 (86.43); Elsnig-3 (8.16) and Elsnig-4 (0.99) and were spiked with ring UL-14C-TNT (100KBq/50g soil). Except Elsnig-1 and Elsnig-2 soils, TNT degraded at same rate in all the soils. Higher persistence of TNT in Elsnig-1 and Elsnig-2 soils appears to be due to higher initial concentrations of nitroaromatics which may be toxic to soil microorganisms. 2-Amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT) were recovered as major metabolites of TNT. Distribution of bound 14C-activity in different soil organic matter (SOM) fractions (humic acid, fulvic acid and humin) was assayed by alkali extraction of solvent extracted Clausthal-1 and Elsnig-1 soils. Results indicate that humic acid accounted for maximum bound activity followed by fulvic acid and humin fractions. Expressing 14C-activity bound/unit weight of organic carbon content of SOM fractions showed that 3 times more 14C-activity was bound to Elsnig humic acid than Clausthal humic acid. Similarly, activity associated with Elsnig fulvic acid was 7 times higher than that of Clausthal fulvic acid suggesting that chemical nature of SOM fractions plays a significant role in binding of contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.