Abstract

Phosphorylation of the Neurospora circadian clock protein FREQUENCY (FRQ) promotes its degradation through the ubiquitin–proteasome pathway. Ubiquitination of FRQ requires FWD-1 (F-box/WD-40 repeat-containing protein-1), which is the substrate-recruiting subunit of an SCF (SKP/Cullin/F-box)-type ubiquitin ligase. In the fwd-1 mutant strains, FRQ degradation is defective, resulting in the accumulation of hyperphosphorylated FRQ and the loss of the circadian rhythmicities. The CSN (COP9 signalosome) promotes the function of SCF complexes in vivo. But in vitro, deneddylation of cullins by CSN inhibits SCF activity. In Neurospora, the disruption of the csn-2 subunit impairs FRQ degradation and compromises the normal circadian functions. These defects are due to the dramatically reduced levels of FWD-1 in the csn-2 mutant, a result of its rapid degradation. Other components of the SCFFWD−1 complex, SKP-1 and CUL-1 are also unstable in the mutant. These results establish important roles for SCFFWD−1 and CSN in the circadian clock of Neurospora and suggest that they are conserved components of the eukaryotic circadian clocks. In addition, these findings resolve the CSN paradox and suggest that the major function of CSN is to maintain the stability of SCF ubiquitin ligases in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.