Abstract
In this work, a carbon nanotube (CNT) electrochemical filter was investigated for treatment of aqueous antibiotics using tetracycline (TC) as a model compound. Electrochemical filtration of 0.2 mM TC at a total cell potential of 2.5 V and a flow rate of 1.5 mL min(-1) (hydraulic residence time <2 s) resulted in an oxidative flux of 0.025 ± 0.001 mol h(-1) m(-2). Replacement of the perforated Ti cathode with a CNT cathode increased the TC oxidative flux by 2.3-fold to 0.020 ± 0.001 mol h(-1) m(-2) at a total cell potential of 1.0 V. Effluent analysis by liquid chromatography-mass spectrometry and disk agar biocidal diffusion tests indicate that the electrochemical filtration process can degrade the TC molecular structure and significantly decrease its antimicrobial activity, respectively. Addition of dissolved natural organic matter (NOM) negatively affected the TC electrooxidation because of competition for CNT sorption and electrooxidation sites. At 2.0 V total cell potential, TC spiked (0.2 mM) into drinking water reservoir and wastewater treatment plant effluent samples had an oxidative flux of 0.015 ± 0.001 and 0.022 ± 0.001 mol h(-1) m(-2), respectively, and an energy requirement of 0.7 kWh kgCOD(-1) or 0.084 kWh m(-3). These results indicate a CNT electrochemical filter may have potential to effectively and efficiently treat antibiotics in water and wastewater effluent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.