Abstract

Chemical oxygen demand (COD) removal rates of sulfosalicylic acid (SSal) degraded by three advanced oxidation processes (AOPs): O3/UV, O3/TiO2/UV and O3/V-O/TiO2 are compared in this paper. (V = Vanadium). The results show that O3/V-O/TiO2 is the most effective process among three AOPs and the order of degradation efficiencies at different pH values is shown as O3/V-O/TiO2 > O3/TiO2/UV > O3/UV. For example, at the buffered solution of pH 6.8, the COD removal rate of O3/V-O/TiO2 reaches 70% in 30 minutes, but those of O3/TiO2/UV and O3/UV are 55% and 47% at the same conditions, respectively. Furthermore, the effect of CO3 2 −on the COD removal rates of three AOPs shows that O3/V-O/TiO2 and O3/TiO2/UV may be considerable promising methods to overcome the limitation of the presence of radical scavenger in solution. Both the adsorption of SSal on catalysts and other oxidants (atom oxygen, photo-generated hole) must be responsible for the above result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.