Abstract

Abstract A new water falling film dielectric barrier discharge was applied to the degradation of sulfadiazine in the aqueous solution. The various parameters that affect the degradation of sulfadiazine and the proposed evolutionary process were investigated. The results indicated that the inner concentrations of 10 mg/L sulfadiazine can be all removed within 30 min. The optimum pH value was 9.10 and both strong acidic and alkaline solution conditions were not suitable for the degradation. The degradation of sulfadiazine can be enhanced by the addition of hydrogen radical scavengers, but be inhibited by adding hydroxyl radical scavengers. The water falling film dielectric barrier discharge was rather ineffective in mineralization, because of the intermediates were recalcitrant to be degraded. The existence of Fe2+ and CCl4 in the liquid phase can promote the degradation and mineralization of sulfadiazine. It was found that the degradation of SDZ was enhanced by CCl4 was mainly because of the increase of OH due to the reaction of CCl4 with H that reduce the chances of their recombination with OH. Based on the 8 intermediate products identified by LC–MS, the proposed evolution of the degradation process was investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call