Abstract
High-voltage electrical cables are prone to saline corrosion, mostly in coastal environments. Steel wires are a crucial element in withstanding the mechanical solicitations of commonly used aluminum conductor steel reinforced (ACSR) cables. An experimental accelerated corrosion test was made, using salt spray tests on greased and ungreased ACSR cables and individual galvanized steel wires. The corrosion mechanism occurring on the specimens was observed by optical microscopy for several durations of corrosion, to determine the evolution of the galvanic layer and steel substrate degradation. This study was completed by an SEM (Scanning Electron Microscopy) and Raman spectroscopy analysis to characterize the corrosion products occurring on the galvanized steel wires. An estimation of the evolution of the mean zinc thickness loss is also given, for each type of specimen. It is shown that the loss rate of the zinc layer is significantly reduced by the presence of aluminum layers around the steel wires and by the effect of the grease. Tensile tests were made on the exposed galvanized steel wires which led to fracture surface observations to assess the effect of corrosion on the evolution of mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.