Abstract

Phenolic compounds exhibit toxic effects and there are still many challenges to find an efficient way for degradation and removal of phenol especially from food. In the present study, magnetically immobilized laccase was prepared and applied as an efficient heterogeneous biocatalyst for biodegradation of phenol from sesame oil. Laccase was attached covalently to magnetic Fe3O4 nanospheres and nanorods, and the characteristics of the immobilized enzyme were studied. The magnetic supports were analyzed by scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, and Fourier-transform infrared spectroscopy. Storage stability analysis of immobilized enzyme showed that more than 70% of initial activity was kept after 15 days at 4 °C. More than 70% phenol degradation was achieved and a 60% decrease in the activity of immobilized laccase was observed after 20 independent cycles. The development of enzyme immobilization techniques on magnetic supports may expand the potential applications of heterogeneous biocatalysts in food industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call