Abstract

Mechanical and thermal properties of polyvinyl alcohol (PVA) are characterized and analyzed using in situ X-ray photoelectron spectroscopy (XPS) and quantum chemistry calculations. It is found that the carbon peaks-commonly used as the reference for spectroscopic analysis-shift under mechanical and thermal stretching. Results also indicate that, at different temperatures and among the various functional groups present in PVA, the carbon in the C-O group is the most stable. Computational calculations showed that Hartree-Fock/10-31G (d) reproduces the binding energy of core carbon electrons with an accuracy of 95%, which is enough to characterize bonds, allowing the results of the spectroscopic analysis to be corroborated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call