Abstract

The effect of processing on molecular structure and properties of polypropylene impact-copolymer (ICPP) was investigated. It was confirmed that multiple extrusions induced changes in molecular weight resulting in increased MFI and decreased long-term thermooxidation stability. In terms of mechanical properties only impact strength well reflected the processing history. Tensile and flexural properties remained almost unchanged. The sizes of rubbery domains observed by SEM exhibited only minimum changes. The results of SSA and TREF techniques provided further data helping to elucidate the phenomena in rubbery phase. Based on indirect indications one could conclude that while typical polypropylene degradation resulting in chain backbone cleavage took place in the PP homopolymer phase, the rubbery phase containing EPR and PE homopolymer underwent a certain extent of crosslinking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.