Abstract

Polybutylene terephthalate and polyethylene glycol terephthalate are subjected to thermal-oxidative degradation and thermomechanical degradation during the process of melt blending, which affect the polymer structure and properties. The effect of feed properties of polyethylene glycol terephthalate and the addition of modified nanoparticles on blends are a question worthy of discussion. This paper introduced the latest development of biodegradable plastics industry as well as the applications of biodegradable plastics in fibers, daily expenses of membranes and bags, agricultural products and automobile industrial products. These biodegradable plastics included poly (lactic acid), polyhydroxyalknoates, poly (butyl enes adipatecoterephthalate), and poly (propylene carbonate). In addition to biochemical effects, degradation also has biophysical effects, that is, after microorganisms erode the polymer, the polymer material is mechanically damaged due to the increase of cells. Therefore, biodegradation is not a single mechanism, but a compomise biophysical and biochemical synergy and mutual promotion of physical and chemical processes. So far, the mechanism of biodegradation has not been fully elucidated. This paper focuses on explaining the currently clear polymer degradation mechanism and the improvement in composition and structure, so as to offer some references for future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call