Abstract

One of the primary concerns of the environment is the increment of the xenobiotics levels, which are released in the natural ecosystem. Phenol has been documented as a pollutant because it has a significant role in water contamination; this will, therefore have an impact on the health of humans. Phenol degradation studies were carried out using a mineral salts medium containing various percentages (v/v) of Ca-alginate beads, polyurethane foam, agar-agar and agarose in batches of culture for 1.5 g/L phenol degradation by immobilized cells of Rhodococcus pyridinivorans GM3 during 24 hours of incubation at 32ºC, 200 rpm and pH 8.5. The results showed that a typical concentration of 3% (w/v) of the sodium alginate to form synthetic Ca-alginate beads was supporting phenol degradation which also emphasizes the structural stability of Ca-alginate beads. The concentration of 1.5 g/L phenol was completely degraded observed within 24 hours at 8% of the Ca-alginate beads immobilized cell and 10% of size cubes 0.125 cm3 of the polyurethane foam immobilized cell. Whilst, the degradation of 1.5 g/L of phenol concentration within 24 hours on both agar and agarose was 16% and 24% at cubes of size 0.125 cm3 and 1.0 cm3 respectively. However, the study of immobilization showed that Ca-alginate immobilized R. pyridinivorans GM3 was more efficient than polyurethane foam, agar and agarose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call