Abstract

The low yield of hydrogen peroxide, narrow pH application range, and secondary pollution due to iron sludge precipitation are the major drawbacks of the electro-Fenton (EF) process. Metal-free electro-Fenton technology based on carbonaceous materials is a promising green pollutant degradation technology. Activated carbon cathodes enriched with carbonyl functional groups were prepared using a two-step annealing method for the degradation of phenol pollutants. The •OH in the activation process of H2O2 were identified using the EPR test technique. The action mechanism of carbonyl groups on H2O2 activation was investigated in conjunction with density functional theory (DFT) calculations. The EPR tests demonstrated that the modified activated carbon could promote the in-situ activation of H2O2 to •OH. And the results of material analysis and DFT showed that C=O could facilitate the activation of hydrogen peroxide through the electron transfer mechanism as an electron-donating group. Electrochemical tests showed that both the oxygen reduction activity and 2e−ORR selectivity of the modified activated carbons were significantly improved. Compared with the original activated carbon cathode and EF, the degradation efficiency of phenol in the ACNH-1000/GF cathode was increased by 58.10% and 45.61%, respectively. Compared with EF, ACNH-1000/GF metal-free electro-Fenton effectively expands the pH application range, and is proven to be less affected by solution initial pH, while avoiding secondary pollution. The metal-free electro-Fenton system can save more than a quarter of the cost of EF system. This study has a deep understanding of the reaction mechanism of the carbonyl modified activated carbon, and provides valuable insights for the design of metal-free catalysts, so as to promote its application in the degradation of organic pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.