Abstract

A large portion of Maillard reaction products (MRPs) cannot be absorbed in the upper gut and therefore may be further decomposed and utilized by colonic microbiota (CM). This work reported the stability of UV-absorbent MRPs, fluorescent MRPs and peptide-bound N(ε)-(carboxymethyl)-lysine (CML) in high molecular weight (HMW, >10 kDa), medium molecular weight (MMW, 1-10 kDa), and low molecular weight (LMW, <1 kDa) gastrointestinal digests of glyoxal-glycated casein in the presence of CM. Fluorescent MRPs showed high stability, whereas UV-absorbent MRPs may be partially decomposed. A higher depletion rate of CML was found in the LMW fraction (38.7%) than in the MMW (21.7%) and HMW (9.6%) fractions. The 16S rRNA sequencing results revealed both beneficial and detrimental changes in CM composition induced by the glycated fractions. Generation of short-chain and branched-chain fatty acids in fermentation solutions with glycated fractions was significantly suppressed compared with that in fermentation solution with unglycated digests. This work revealed the possible interplay between peptide-bound MRPs and CM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.