Abstract

A simple and easily scalable “wet” procedure was used to prepare nanocrystalline cerium oxide capable of destroying the toxic organophosphate pesticide parathion methyl. The synthetic procedure consists of the direct precipitation of cerous salt with aqueous ammonia in the absence of CO 2 . The prepared cerium oxide was able to decompose the organophosphate compounds both in nonpolar (e.g., heptane) and polar aprotic (e.g., acetonitrile) solvents. However, in solvents with hydrogen-bond donating ability, the –OH groups on the cerium oxide surface were solvated and inactivated. The preferential solvation model was used to express the experimental dependencies of the cerium oxide degradation efficiency on the composition of the water-acetonitrile mixture. In certain solvent systems, some empirical polarity scales, such as the alpha-scale or the Dimrodth-Richardt parameter E T (30), may be correlated with the degradation efficiency of cerium oxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.