Abstract
In this study, high-performance Fe-Mn-modified industrial lignin-based biochar (FMBC) was successfully prepared to facilitate the efficient degradation of oxytetracycline by its driven sulfate radical-based advanced oxidation process with 90% degradation within 30 min. The results showed that oxygenated functional groups (e. g. hydroxyl, carbonyl, etc.) in industrial lignin-based biochar, the synergistic effect of transition metals Fe and Mn, and defective structures were the active sites for activation of peroxy-disulfate. SO4·− produced during the degradation process assumed a key function. Significantly, 38 intermediates were innovatively proposed for the first time in the system, and oxytetracycline was degraded in 7 ways, including deamidation, demethylation, hydroxylation, secondary alcohol oxidation, ring opening, dehydration, and carbonylation. A new perspective on the application of industrial lignin in the advanced oxidative degradation of organic pollutants was provided by this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.