Abstract

Sediment is an important final repository of persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs). Herein, a novel catalyst of LaFeO3 nanoparticles supported on biochar was synthesized from water caltrop shell by chemical precipitation. The composite (LFBC) was used as peroxymonosulfate (PMS) activator to oxidize PAHs in real marine sediments. Systematic surface characterization confirmed the immobilization of well crystalline nano LaFeO3 particles onto the biochar surface. Under optimal conditions, i.e., [PMS] = 3 × 10-4 M, [LFBC] = 0.75 g/L, pH 6.0, and seawater, the total PAH degradation efficiency was 90%, while that of 2-, 3-, 4-, 5-, and 6-ring PAHs was 52%, 61%, 66%, 56%, and 29%, respectively, in 24 h. The Langmuir-Hinshelwood equation better predicted the PAHs degradation kinetics over LFBC by PMS. Interactions between surface oxygen species at LaFeO3 defective sites and the graphitized biochar network facilitated the PAHs degradation. Furthermore, changes in the bacterial community during the LFBC/PMS treatment were highlighted to assess the sustainable development of the sediment ecosystem. The LFBC/PMS process enhanced the biological richness and diversity of sediment eco-systems. The major phylum was Proteobacteria initially, while Hyphomonas was the genera after LFBC/PMS treatment of the sediment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call