Abstract

This aqueous reaction between ozone and two alkylphenols (APs), namely octylphenol (OP) and nonylphenol (NP), has been investigated. Both compounds are important endocrine disrupting chemicals, which arise from the biodegradation of alkylphenol ethoxylates and are often found at relatively high concentrations in wastewater effluents. In this paper the results of an experimental study are presented which provide values for the reaction rate constants between molecular ozone and undissociated OP and NP, and overall reaction rate constants for the degradation of the two APs at pH values in the range of 7-9. The kinetic rate constants for OP and NP degradation by molecular ozone were 4.33(+/-0.18) x 10(4) and 3.90(+/-0.10) x 10(4) M(-1) s(-1), and the reaction stoichiometry was similar in both cases and equal to approximately 1.3:1 ([O3]:[AP]). The overall second order reaction rate constants for the two APs increased significantly with increasing pH, which is believed to be mainly due to the increasing influence of indirect radical reaction with increasing pH; this aspect is considered in more detail in a companion paper. A preliminary investigation of the reaction mechanism suggests that an initial product of ozonation is hydroxyl-alkyl phenol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call