Abstract

This study investigated the degradation kinetics and halonitromethanes formation potential (HNMsFP) of two nitro-based pharmaceuticals (i.e., ranitidine (RNTD) and nizatidine (NZTD)) during ultraviolet (UV) photolysis. It was found that the degradation kinetics of RNTD and NZTD exhibited pH-dependent trends, in accordance with their deprotonation equilibria. The neutral species of RNTD and NZTD were more photo-reactive than their corresponding deprotonated species, with their specific fluence-based first-order rate constants varying in the range of 5.64–31.90 m2 E−1. Both the RNTD and NZTD were prone precursors of HNMs (with molar yields of 5.6± 0.3% and 4.7± 0.4%, respectively at pH 7.0). Acidic and neutral circumstances facilitated the HNMs formation. The UV photolysis of RNTD and NZTD could reduce their HNMsFP simultaneously. Positive linear relationships between residual RNTD or NZTD concentration and HNMsFP were observed and the denitration during the UV photolysis accounted for the HNMsFP reduction. With the mandatory UV disinfection fluences in China (i.e. 20–80 mJ cm−2), the effective abatement of RNTD and NZTD and their HNMsFP could not be fully achieved, highlighting the necessity of increasing UV fluence or developing UV-based advanced oxidation process in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.