Abstract

A novel bacterial strain Klebsiella sp. Y1 was isolated from the soil of a constructed wetland, and it was identified based on the 16S rDNA sequence analysis. The co-metabolic degradation of nicosulfuron with glucose by Klebsiella sp. Y1 was investigated. The response surface methodology analysis indicated that the optimal pH and temperature were 7.0 and 35 °C, respectively, for the degradation of nicosulfuron. Under the optimal conditions, the degradation of nicosulfuron fitted Haldane kinetics model well. The removal of nicosulfuron was triggered by the acidification of glucose, which accelerated the hydrolysis of nicosulfuron. Then, the C-N bond of the sulfonylurea bridge was attacked and cleaved. Finally, the detected intermediate 2-amino-4,6-dimethoxypyrimidine was further biodegraded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.