Abstract

This work examines the reaction of reduced sulfur species (e.g., bisulfide, thiosulfate, thiophenolate) with naled, a registered insecticide, in well-defined anoxic aqueous solutions at 5 degrees C. High concentrations of reduced sulfur species can occur in the porewater of sediments and in anoxic subregions of estuaries. The dominanttransformation product from the reaction of naled with reduced sulfur species is dichlorvos, which indicates that debromination is the major reaction pathway. Dichlorvos is also a registered insecticide which is more toxic than naled. The second-order rate constants for reaction of naled with bisulfide and thiophenolate at 5 degrees C are 10.2 +/- 0.4 M(-1) s(-1) and 27.3 +/- 0.9 M(-1) s(-1), respectively, while the second-order rate constant for the reaction of naled with hydrogen sulfide and thiophenol are not significantly different from zero. The second-order rate constant of the reaction of naled with thiosulfate at 5 degrees C is 5.0 +/- 0.3 M(-1) s(-1). In contrast, the second-order rate constant of the reaction of dichlorvos with bisulfide at 25 degrees C is (3.3 +/- 0.1) x 10(-3) M(-1) s(-1). The activation parameters of the reaction of naled with bisulfide were also determined from the measured second-order rate constants over a temperature range. The results indicate that reduced sulfur species can play a very important role in the transformation of naled and dichlorvos in the coastal marine environment. It can be expected that in the presence of reduced sulfur species, naled is almost immediately transformed into the more toxic dichlorvos, which has an expected half-life of 4 days to weeks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.