Abstract
Secondary low-energy electrons are abundantly created during the early moments following the deposition of energy by radiation into cells. Here we show the ability of slow (<12 eV) electrons to effectively decompose gas-phase N-acetyl tryptophan (NAT) which can model a simple protein. The fragmentation of NAT, initiated via a resonant electron-molecule interaction exclusively at the peptide bridge, produces a large variety of negative species. The present findings contribute to the molecular description of the initial step in the radiation-induced damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.