Abstract
A novel gas-liquid hybrid double dielectric barrier discharge (DDBD) reactor with coaxial cylinder configuration was developed for the degradation of methylene blue (MB) in this study. In this DDBD reactor, the reactive species generation occurred in the gas-phase discharge, directly in the liquid, and in the mixture of the working gas bubbles and the liquid, which could effectively increase the contact area between the active substance and MB molecules/intermediates, resulting in an excellent MB degradation efficiency and mineralization (COD and TOC). The electrostatic field simulation analysis by Comsol was carried out to determine the appropriate structural parameters of the DDBD reactor. The effect of discharge voltage, air flow rate, pH, and initial concentration on MB degradation was evaluated. Besides, major oxide species, ·OH, the dissolved O3 and H2O2 generated in this DDBD reactor were determined. Moreover, major MB degradation intermediates were identified by LC-MS, based on which, possible degradation pathways of MB were proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.