Abstract

Melt electrowriting (MEW) has been widely used to process polycaprolactone (PCL) into highly ordered microfiber scaffolds with controllable architecture and geometry. However, the integrity of PCL during specific processes involved in routine MEW scaffold development has not yet been thoroughly investigated. This study investigates the impact of MEW processing on PCL following exposure to high temperatures required for melt extrusion as well as atmospheric plasma, a widely used surface treatment for improving MEW scaffold hydrophilicity. The change in polymer molecular weight and melt temperature is characterized, in comparing unprocessed and processed samples, in addition to analysis of the mechanical and surface properties of the scaffolds. No significant difference in the molecular weight or mechanical properties of the PCL scaffolds is evident following 5 days of cyclic heating to 90°C. Exposure to plasma for up to 5min significantly increased hydrophilicity and surface adhesion force, characterized via contact angle and atomic force microscope, however, significant polymer degradation occurred evidenced by increased brittleness of the scaffolds. This study demonstrates the degradation of PCL following fabrication via MEW and surface treatment to guide the optimization of scaffold development for subsequent applications in tissue engineering and biofabrication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call