Abstract

The ZnS quantum dots decorated SnO2 nanosheets were prepared by a hydrothermal synthesis method. The characteristic structure of ZnS QDs/SnO2 nanocomposites was analyzed using several instruments such as X-ray diffraction, transmittance electron microscopy, atomic force microscopy, X-ray photoelectron and UV–vis and photoluminescence spectroscopy. The average diameters of SnO2 nanosheets and ZnS QDs/SnO2 nanocomposites were 12.5 and 3.6 nm, respectively. The merits of sono–photo–Fenton treatment process were investigated using degradation of Roxithromycin. The process involved ultrasound and UV irradiation, and hydrogen peroxide generated in situ. The treatment performance of the US/UV/catalyst process was superior to the constituent processes and synergistic mechanisms in the US/UV/catalyst process were the result of the promotion of hydroxyl radical generation. For the constituent processes, the US/catalyst system showed to the best efficiency with used catalyst compared to the conventional Fenton reaction. It was also observed that the addition of catalyst to the test solution undergoing UV irradiation substantially improved Roxithromycin and clarithromycin degradation. The best experimental conditions for efficient CLA and RXM degradation in the US/UV/catalyst/H2O2 system were pH0 3, hydrogen peroxide concentration of 6 mmol L−1, ZnS QDs/SnO2 nanocomposites dose of 0.3 g L−1 and ultrasonic power of 75 W. The antibacterial experiment was investigated under visible light illumination and the ZnS QDs/SnO2 nanocomposite showed good efficiency as antibacterial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.