Abstract

It is shown that circular PM2 DNA with two gaps of 13 nucleotides per molecule is degraded by purified recBC enzyme from Escherichia coli to acid-soluble material at a rate which is less than one tenth of the rate of solubilization of linear duplex DNA. Increasing the gap length in the circular DNA to 40-650 nucleotides does not affect the breakdown of the molecules by the recBC enzyme, nor does it change the proportions of the products formed (acid-soluble material, acid-insoluble fragments and non-degraded molecules). On the other hand, terminal gaps in linear duplex DNA produced by limited digestion with either exonuclease III or lambda exonuclease significantly reduce the rate of the degradation by the recBC enzyme, particularly when the gaps exceed 100 nucleotides. The results suggest that the recBC enzyme does not cleave gaps in circular DNA at random positions, but possibly at the junction between single-stranded and duplex DNA or close to it. The degradation of gapped circular DNA by purified recBC enzyme was used to search for an inhibitor of the recBC enzyme in extracts from ultraviolet-irradiated cells. No such inhibitor has been observed but rather a weak stimulatory factor for the solubilization of gapped circular DNA by the recBC enzyme. Thus, the experimental system appears not to be suited as a test in vitro for an ultraviolet-induced inhibitor of the recBC enzyme which has been postulated to be produced in recA+ lexA+ cells of E. coli after ultraviolet irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.