Abstract
The presence of levofloxacin (LEV) in aqueous solutions can pose health risks to humans, have adverse effects on aquatic organisms and ecosystems, and contribute to the development of antibiotic-resistant bacteria. This study aims to investigate the feasibility of using electrocoagulation residuals (ECRs) as a heterogeneous catalyst in the electro-Fenton process for degrading LEV. By combining electrocoagulation residuals with sodium alginate, ECRs-alginate beads were synthesized as a heterogeneous electro-Fenton composite. The response surface method was employed to investigate the optimization and influence of various operating parameters such as the initial concentration of LEV (10–50 mg/L), voltage (15–35 V), pH (3–9), and catalyst dose (1–9 g/L). The successful incorporation of iron and other metals into the ECRs-alginate beads was confirmed by characterization tests such as EDX and FTIR. By conducting a batch reaction under optimal conditions (initial LEV concentration = 20 mg/L, pH = 4.5, voltage = 30V, and catalyst dose = 7 g/L), a remarkable degradation of 99% for LEV was achieved. Additionally, under these optimal conditions, a high removal efficiency of 92.3% for total organic carbon (TOC) could be attained within 120 min and these findings are remarkable compared to previous studies. The results further indicated that the degradation of levofloxacin (LEV) could be accurately quantified by utilizing the first-order kinetic reaction with a 0.03 min−1 rate constant. The synthesized beads offered notable advantages in terms of being eco-friendly, simple to use, highly efficient, and easily recoverable from the liquid medium after use.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.