Abstract

This study investigated the degradation of strobilurin fungicide kresoxim-methyl (KM) in three typical agricultural soils from China by aerobic and anaerobic degradation experiments, focusing on degradation kinetics of KM, identification of transformation products (TPs), and prediction of toxicity end points via in silico approaches. KM showed a pronounced biphasic degradation in different soils and could rapidly degrade, with DT50 of <3 days. Four TPs were identified by high-resolution mass spectrometry (HRMS), and three of them have never been reported before. Possible degradation pathways of KM in soil were proposed, including hydrolysis, oxidation, and reduction, and the main mechanism involved in the biodegradation of KM was the hydrolysis of methyl ester regardless of aerobic or anaerobic conditions. The results of toxicity evaluation indicated that some TPs are more toxic than KM and may have a developmental toxicity and mutagenicity, and further risk assessment should be carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call