Abstract

The degradation and mineralization ability of electrochemical processes like electro-oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA-assisted photoelectro-Fenton (PEF) has been comparatively studied for solutions of the herbicide S-metolachlor. Solutions of 100mL have been treated using an undivided cell equipped with an air-diffusion cathode and a boron-doped diamond (BDD) anode. The effect of pH, current density, and Fe2+ and S-metolachlor concentrations has been thoroughly studied. The total organic carbon removal profiles have demonstrated the feasibility of almost overall mineralization by EF and PEF after 9h at 300mA. The herbicide decays in both treatments informed about the complexation of Fe(III) ions formed from Fenton’s reaction, which decelerated S-metolachlor removal. However, the high oxidation power of BDD anode allowed the gradual mineralization of such complexes. The identification of chlorinated and non-chlorinated degradation byproducts by GC–MS has allowed the proposal of main degradation routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.