Abstract

Targeting disease-causing proteins for ubiquitination and degradation by chimeric molecules represents a promising alternative therapeutic strategy in cancer. Here, several Cbl-based chimeric ubiquitin ligases were recombined to achieve effective down-regulation of HER2. These chimeric molecules consisted of the Cbl NH(2)-terminal tyrosine kinase binding domain, linker, and RING domain, with the Src homology 2 domain replaced with that from growth factor receptor binding protein 2 (Grb2), Grb7, p85, or Src. The chimeric proteins not only interacted with HER2 but also enhanced the down-regulation of endogenous overexpressed HER2. After the chimeric proteins were introduced into HER2-overexpressing breast cancer SK-BR-3 cells or ovarian cancer SK-OV-3 cells, they effectively promoted HER2 ubiquitination and degradation in a RING finger domain-dependent manner. Consequently, expression of these chimeric molecules led to an inhibition of colony formation, increased the proportion of cells in the G(1) cycle, and suppressed tumorigenicity. Collectively, our findings suggest that the Cbl-based chimeric ubiquitin ligases designed in the present study may represent a novel approach for the targeted therapy of HER2-overexpressing cancers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.