Abstract

AbstractMany glacial deposits in the Quartermain Mountains, Antarctica present two apparent contradictions regarding the degradation of unconsolidated deposits. The glacial deposits are up to millions of years old, yet they have maintained their meter‐scale morphology despite the fact that bedrock and regolith erosion rates in the Quartermain Mountains have been measured at 0·1–4·0 m Ma−1. Additionally, ground ice persists in some Miocene‐aged soils in the Quartermain Mountains even though modeled and measured sublimation rates of ice in Antarctic soils suggest that without any recharge mechanisms ground ice should sublimate in the upper few meters of soil on the order of 103 to 105 years. This paper presents results from using the concentration of cosmogenic nuclides beryllium‐10 (10Be) and aluminum‐26 (26Al) in bulk sediment samples from depth profiles of three glacial deposits in the Quartermain Mountains. The measured nuclide concentrations are lower than expected for the known ages of the deposits, erosion alone does not always explain these concentrations, and deflation of the tills by the sublimation of ice coupled with erosion of the overlying till can explain some of the nuclide concentration profiles. The degradation rates that best match the data range 0·7–12 m Ma−1 for sublimation of ice with initial debris concentrations ranging 12–45% and erosion of the overlying till at rates of 0·4–1·2 m Ma−1. Overturning of the tills by cryoturbation, vertical mixing, or soil creep is not indicated by the cosmogenic nuclide profiles, and degradation appears to be limited to within a few centimeters of the surface. Erosion of these tills without vertical mixing may partially explain how some glacial deposits in the Quartermain Mountains maintain their morphology and contain ground ice close to the surface for millions of years. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.