Abstract

The rate of degradation of poly[N 5-(2- hydroxyethyl)- l- glutamine] (PHEG), poly( l-glutamic acid) (PGA) and poly[HEG-co-GA] random copolymers by papain was measured in the pH range 4.0–7.5, employing the gel permeation chromatography method. The effect of the degree of ionization on the polymer conformation was measured by circular dichroism (c.d.). PHEG, which is uncharged, had a random coil conformation and an almost constant degradation rate within the whole pH interval. The ionization of PGA increased with increasing pH and was accompanied by conformational transition from helix to random coil. The hydrolysis of PGA by papain depended on pH with the optimum at about pH 5, indicating that both the high content of helix (at pH < 5) and increasing charge density (atpH > 5), decreased the degradation rate. Contrary to PGA, pH profiles of the degradation rate of poly[ HEG-co- GA] copolymers are monotonous and do not decrease at pH < 5. In the copolymers the HEG residues act as a helix breaker and limit the formation of helical conformation. The role of structural features of a macromolecular substrate, i.e. the charge, helical conformation and the nature of amino acid residues, in the interaction between enzyme and polymer is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.