Abstract

Antibiotics are a therapeutic class widely found in environmental matrices and extensively studied due to its persistence and implications for multi-resistant bacteria development. This work presents an integrated approach of analytical multi-techniques on assessing biodegradation of fluorinated antibiotics at a laboratory-scale microcosmos to follow removal and formation of intermediate compounds. Degradation of four fluoroquinolone antibiotics, namely Ofloxacin (OFL), Norfloxacin (NOR), Ciprofloxacin (CPF) and Moxifloxacin (MOX), at 10mgL−1 using a mixed bacterial culture, was assessed for 60 days. The assays were followed by a developed and validated analytical method of LC with fluorescence detection (LC–FD) using a Luna Pentafluorophenyl (2) 3μm column. The validated method demonstrated good selectivity, linearity (r2>0.999), intra-day and inter-day precisions (RSD<2.74%) and accuracy. The quantification limits were 5μgL−1 for OFL, NOR and CPF and 20μgL−1 for MOX. The optimized conditions allowed picturing metabolites/transformation products formation and accumulation during the process, stating an incomplete mineralization, also shown by fluoride release. OFL and MOX presented the highest (98.3%) and the lowest (80.5%) extent of degradation after 19 days of assay, respectively. A representative number of samples was selected and analyzed by LC–MS/MS with triple quadrupole and the molecular formulas were confirmed by a quadruple time of flight analyzer (QqTOF). Most of the intermediates were already described as biodegradation and/or photodegradation products in different conditions; however unknown metabolites were also identified. The microbial consortium, even when exposed to high levels of FQ, presented high percentages of degradation, never reported before for these compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.