Abstract

The isolated perfused rat liver was used to study the degradation of 125I-labelled protein supplied in the perfusion medium. Formaldehyde-denatured proteins (human serum albumin, bovine serum albumin and especially rat liver phosphoenolpyruvate carboxykinase (GTP)) were taken up by the liver and degraded at high rates. Native human serum albumin was not degraded at significant rates by the perfused liver, while native phosphoenolpyruvate carboxykinase (GTP) was catabolised at about one-fourth the rate of the denatured enzyme. The degradation rate of denatured human serum albumin increased markedly as protein was added up to 0.7 mg, and more gradually with further increases in added protein. The biphasic nature of concentration dependence probably reflects the contribution of different cell types in the liver. Autoradiographic examination of serial biopsies taken during perfusion of the liver with formaldehyde-denatured, 125I-labelled bovine serum albumin showed that at the cellular level the radioactivity was located predominantly in Kupffer and other non-parenchymal cells; and at the subcellular level the radioactivity was largely in endocytic vesicles, lysosomes and occasionally in the sinusoidal spaces. No significant radioactivity was found associated with other cytoplasmic organelles or the nucleus. It is concluded that lysosomes of the non-parenchymal cells are primarily responsible for the degradation of denatured extracellular protein that enters the liver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call