Abstract

ABSTRACT In this study, the significant iron-based material, hydroxyl-functionalized ball-milled zero-valent iron/Fe3O4 (HFB-ZVI/Fe3O4) was employed for the experiments. The performance of the Electro + HFB-ZVI/Fe3O4 + Oxone system for the degradation of chemical oxygen demand (COD) in antibiotic wastewater was investigated. A direct current was applied between a graphite plate anode and two iron plate cathodes, and a series of operational parameters, such as applied electric current, the dosage of HFB-ZVI/Fe3O4 composite, the dosage of Oxone, and initial solution pH, were explored to evaluate the oxidation process. The application of electric current enhanced the gradual degradation of COD and the increase of current intensity accelerated COD degradation. The neutral condition was favourable for the rapid degradation of COD in a short reaction time by the Electro + HFB-ZVI/Fe3O4 + Oxone process and promoted the degradation efficiency of COD. An increase of electric current gradually decreased the reaction solution pH, the larger the electric current applied in the reaction process, the lower the final pH of the reaction solution. Under the optimal experimental conditions (1 g/L HFB-ZVI/Fe3O4 composite, 0.3 g/L Oxone, current intensity = 500 mA, initial solution pH = 7.85), Electro + HFB-ZVI/Fe3O4 + Oxone achieved 99% COD degradation in antibiotic wastewater. Radicals quenching experiments indicated the contribution to COD degradation by hydroxyl radicals (HO•), sulphate radicals (SO4 •–) and other oxidants were 66.03%, 24.014% and 9.756%, respectively. The possible mechanism of COD degradation in the Electro + HFB-ZVI/Fe3O4 + Oxone system was also discussed in this study. The findings in this work provided useful information for the treatment of wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call