Abstract

A combined advanced oxidation process based on the electrochemical oxidation of chloramphenicol (CHL) on a boron-doped diamond (BDD) electrode under UV irradiation was investigated. The influence of the main process parameters (current density, pH, temperature, and chloride concentration) on CHL degradation and mineralization was assessed. An estimation of the energy consumption required to mineralize CHL was also made.The results showed that CHL can be completely degraded and extensively mineralized by 3-h UV-assisted anodic oxidation on BDD. The process can be further accelerated by chlorides, as these species act as precursors for the photo-induced formation of radical species contributing to CHL oxidation. Under optimal conditions (300 mA m–2, 0.01 M NaCl, ambient temperature, and pH 10), complete CHL removal occurred after 150 min of treatment, and approximately 95 % mineralization was achieved in 180 min.Overall, the results obtained suggest that the investigated process may represent a promising approach to treat wastewaters containing CHL or other recalcitrant antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call