Abstract

The recently isolated ruminal sporeforming cellulolytic anaerobe Clostridium longisporum B6405 was examined for its ability to degrade barley straw, nonlignified cell walls (mesophyll and epidermis) and lignified cell walls (fiber) of ryegrass, and alfalfa cell walls in comparison with strains of Ruminococcus albus. R. albus strains degraded 20 to 28% of the dry matter in barley straw in 10 days, while the clostridium degraded less than 2%. A combined inoculum of R. albus SY3 and strain B6405 was no more efficient than SY3 alone, and the presence of Methanobacterium smithii PS did not increase the amount of dry matter degraded. In contrast, with alfalfa cell walls as the substrate, the clostridium was twice as active (28% weight loss) as R. albus SY3 (15%). The percentages of dry matter degraded from ryegrass cell walls of mesophyll, epidermis, and fiber for the clostridium were 50, 47, and 32%, respectively, and for R. albus SY3 they were 77, 73, and 63%, respectively. Analyses of the predominant neutral sugars (arabinose, xylose, and glucose) in the plant residues after bacterial attack were consistent with the values for dry matter weight loss. Measurements of the amount of carbon appearing in the fermentation products indicated that R. albus SY3 degraded ryegrass mesophyll cell walls most rapidly, with epidermis and fiber cell walls being degraded at similar rates. Strain B6405 attacked alfalfa cell walls at a rate greater than that of any of the ryegrass substrates. These results indicate an unexpected degree of substrate specificity in the ability of C. longisporum to degrade plant cell wall material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.